当前位置:咋考网 > 高中 > 高二 > 物理 > 上册 > 月考试卷 >

2020年高二物理上册月考测验相关

2019-2020年高二上册第三次月考物理题开卷有益(河北省承德第一中学)

关于磁感应强度,下列说法中错误的是( )
A.由可知,B与F成正比,与IL成反比
B.由可知,一小段通电导体在某处不受磁场力,说明此处一定无磁场
C.通电导线在磁场中受力越大,说明磁场越强
D.磁感应强度的方向一定不是该处电流的受力方向

【答案】ABC
【解析】
在磁场中磁感应强度有强弱,则由磁感应强度来描述强弱.将通电导线垂直放入匀强磁场中,即确保电流方向与磁场方向相互垂直,则所受的磁场力与通电导线的电流与长度乘积之比.
解答:解:A、由磁感应强度的定义式可知,是属于比值定义的.B与F、IL均没有关系,故A错误;
B、将通电导线放入磁场中,当平行放入时导线不受安培力;当垂直放入时导线所受安培力达到最大,故通电导线放在磁场中某处不受安培力的作用时,则该处的磁感应强度可能零,也可能不为零.故B错误;
C、同一条通电导线放在磁场中某处所受的磁场力,磁场力与磁感应强度、电流大小、有效长度有关.故C错误;
D、磁感应强度的方向与该处电流的受力方向垂直,所以磁感应强度的方向一定不是该处电流的受力方向.故D正确;
本题选错误选项,故选ABC

如图所示,套在条形磁铁外的三个线圈,其面积S1>S2= S3,且 “3”线圈在磁铁的正中间。设各线圈中的磁通量依次为φ1、φ2、φ3,则它们的大小关系是( )

A. φ1>φ2>φ3 B. φ1>φ2=φ3
C. φ1<φ2<φ3 D. φ1<φ2=φ3

【答案】C
【解析】
所有磁感线都会经过磁体内部,内外磁场方向相反,所以线圈面积越大则抵消的磁场越大,则,线圈3在正中间,此处磁场最弱,即抵消的最少,所以,最大,选C

如图所示,半径为R的圆形区域内有垂直于纸面向里的匀强磁场.重力不计、电荷量一定的带电粒子以速度v正对着圆心O射入磁场,若粒子射入、射出磁场点间的距离为R,则粒子在磁场中的运动时间为

A. B. C. D.

【答案】A
【解析】
粒子在磁场中做匀速圆周运动,画出轨迹,如图所示:

由几何关系得,轨道半径:

根据牛顿第二定律,有:

解得:

联立解得:

故在磁场中的运动时间:

A. 。故A正确;
B. 。故B错误;
C. 。故C错误;
D. 。故D错误。

如图所示,足够长的竖直绝缘管内壁粗糙程度处处相同,处在方向彼此垂直的匀强电场和匀强磁场中,电场强度和磁感应强度的大小分别为E和B,一个质量为m,电荷量为+q的小球从静止开始沿管下滑,下列关于小球所受弹力N、运动速度v、运动加速度a、运动位移x,运动时间t之间的关系图像中正确的是( )

A. B.
C. D.

【答案】A
【解析】试题分析:小球向下运动的过程中,在水平方向上受向右的电场力qE和水平向左的洛伦兹力和管壁的弹力N的作用,水平方向上合力始终为零,则有: ①,在竖直方向上受重力和摩擦力f作用,其中摩擦力为: ②,在运动过程中加速度为: ③,由式可知,N-v图象时一条直线,且N随v的增大而减小,A正确;由①②③可知,小球向下运动的过程中,速度的变化不是均匀的,所以加速度的变化也不是均匀的,B错误;由②可知,在速度增大的过程中,摩擦力是先减小后增大的(在达到最大速度之前),结合③式可知加速度先增大后减小,C图体现的是加速度先减小后增大,C错误;在速度增到最大之前,速度是一直增大,而图D体现的是速度先减小后增大,所以选项D错误.

回旋加速器的核心部分是真空室中的两个相距很近的D形金属盒,把它们放在匀强磁场中,磁场方向垂直于盒面向下.连接好高频交流电源后,两盒间的窄缝中能形成匀强电场,带电粒子在磁场中做圆周运动,每次通过两盒间的窄缝时都能被加速,直到达到最大圆周半径时通过特殊装置引出,如果用同一回旋加速器分别加速氚核()和粒子() ,比较它们所需的高频交流电源的周期和引出时的最大动能,下列说法正确的是

A. 加速氚核的交流电源的周期较大,氚核获得的最大动能较大
B. 加速氚核的交流电源的周期较小,氚核获得的最大动能较大
C. 加速氚核的交流电源的周期较大,氚核获得的最大动能较小
D. 加速氚核的交流电源的周期较小,氚核获得的最大动能较小

【答案】C
【解析】带电粒子在磁场中运动的周期与交流电源的周期相同,根据 ,知氚核()的质量与电量的比值大于α粒子(),所以氚核在磁场中运动的周期大,则加速氚核的交流电源的周期较大根据 得,最大速度,则最大动能,氚核的质量是α粒子的倍,氚核的电量是倍,则氚核的最大动能是α粒子的倍,即氚核的最大动能较小.故C正确,A、B、D错误.故选C.

如图所示,矩形区域MPQN长MN=d,宽MP=d,一质量为m(不计重力)、电荷量为q的带正电粒子从M点以初速度v0水平向右射出,若区域内只存在竖直向下的电场或只存在垂直纸面向外的匀强磁场,粒子均能击中Q点,则电场强度E的大小与磁感应强度B的大小的比值为(  )

A. B. C. D.

【答案】B
【解析】在电场中做类似平抛运动过程,根据分运动公式,有水平方向,竖直方向: ,只有磁场时,做匀速圆周运动,轨迹如图所示:结合几何关系,有,解得,洛伦兹力提供向心力,根据牛顿第二定律,有,联立解得,故,B正确.

利用霍尔效应制作的霍尔元件,广泛应用于测量和自动控制等区域,如图是霍尔元件的工作原理示意图,磁感应强度B垂直于霍尔元件的工作面向下,通入图示方向的电流I,C、D两侧面会形成电势差下列说法正确的是

A.电势差仅与材料有关
B.仅增大磁感应强度时,电势差变大
C.若霍尔元件的载流子是自由电子,则电势差
D.在测定地球赤道上方的地磁场强弱时,霍尔元件的工作面应保持水平

【答案】B
【解析】
AB.根据CD间存在电势差,之间就存在电场,电子在电场力和洛伦兹力作用下处于平衡,设霍尔元件的长宽高分别为a、b、c,则有:

I=nqvS=nqvbc
则:

n由材料决定,故U与材料有关;U还与厚度c成反比,与宽b无关,同时还与磁场B与电流I有关,故A错误、B正确。
C.根据左手定则,电子向C侧面偏转,C表面带负电,D表面带正电,所以D表面的电势高,则UCD<0.故C错误。
D.在测定地球赤道上方的地磁场强弱时,应将元件的工作面保持竖直,让磁场垂直通过。故D错误。

如图所示,1831年法拉第把两个线圈绕在一个铁环上,A线圈与电源、滑动变阻器R组成一个回路,B线圈与开关S、电流表G组成另一个回路通过多次实验,法拉第终于总结出产生感应电流的条件关于该实验下列说法正确的是  

A. 闭合开关S的瞬间,电流表G中有的感应电流
B. 闭合开关S的瞬间,电流表G中有的感应电流
C. 闭合开关S,滑动变阻器的滑片向左滑的过程中,电流表G中有的感应电流
D. 闭合开关S,滑动变阻器的滑片向左滑的过程中,电流表G中有的感应电流

【答案】D
【解析】
AB.因为左端线圈产生恒定的磁场,所以右侧线圈中的磁通量不发生变化,闭合开关瞬间不会产生感应电流,AB错误。
CD.闭合开关S,滑动变阻器的滑片向左滑的过程中,回路电阻变大,电流变小,产生磁场强度变小,根据右手定则可以判断,B线圈感应电流产生的磁场向下,根据右手定则判断流经电流表的电流为,C错误D正确。

如图是质谱仪的工作原理示意图,带电粒子被加速电场加速后,进入速度选择器速度选择器内相互正交的匀强磁场和匀强电场,磁感应强度为B,电场强度为粒子沿直线穿过速度选择器后通过平板S上的狭缝P,之后到达记录粒子位置的胶片板S下方有磁感应强度为的匀强磁场下列说法正确的是

A.粒子在速度选择器中一定做匀速运动
B.速度选择器中的磁场方向垂直纸面向里
C.能通过狭缝P的带电粒子的速率等于
D.比荷越大的粒子打在胶片上的位置越靠近狭缝P

【答案】AD
【解析】
A.在速度选择其中粒子做直速运动,受到的电场力和洛伦兹力大小相等,合力为零,故A正确;
B.粒子作直线运动,故受到的洛伦兹力向左,故磁场垂直于纸面向外,故B错误;
C.根据知,

知速度大小为的粒子能通过速度选择器,故C错误;
D.根据知,

则越靠近狭缝P,比荷越大,则半径越小,粒子打在胶片上的位置越靠近狭缝P,故D正确;

带电小球以一定的初速度 v0 竖直向上抛出,能够达到的最大高度为 h1;若加上水平方向的匀强磁场,且保持初速度仍为 v0,小球上升的最大高度为 h2,若加上水平方向的匀强电场,且保持初速度仍为 v0,小球上升的最大高度为 h3,如图所示,不计空气阻力,则( )

A. h1=h2=h3
B. h1>h2>h3
C. h1=h2>h3
D. h1=h3>h2

【答案】D
【解析】试题分析:竖直上抛的最大高度为:;当小球在磁场中运动到最高点时,小球应有水平速度,设此时小球的动能为,则:,又由,所以;当加上电场时,由运动的分解可知:在竖直方向上有,,所以,D对。

如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q,质量为m (不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ=30°,孔Q到板的下端C的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,则:( )

A. 两板间电压的最大值 B. CD板上可能被粒子打中区域的长度
C. 粒子在磁场中运动的最长时间 D. 能打到N板上的粒子的最大动能为

【答案】ACD
【解析】
画出粒子运动轨迹的示意图,如图所示,

A. 当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,可知粒子半径r=L,的加速电场中,根据动能定理:,在偏转磁场中,根据洛伦兹力提供向心力可得:,联立可得:,故A正确;B.设粒子轨迹与CD相切于H点,此时粒子半径为,粒子轨迹垂直打在CD边上的G点,则GH间距离即为粒子打中区域的长度x,根据几何关系:,可得:,根据几何关系可得粒子打中区域的长度:,故B错误;C.粒子在磁场中运动的周期为:,粒子在磁场中运动的最大圆心角:,所以粒子在磁场中运动的最长时间为:,故C正确;D.当粒子在磁场的轨迹与CD边相切时,即粒子半径,时,打到N板上的粒子的动能最大,最大动能:,根据洛伦兹力提供向心力可得:,联立可得能打到N板上的粒子的最大动能为:,故D正确;故选ACD。

磁流体发电机可简化为如下模型:两块长、宽分别为a、b的平行板,彼此相距L,板间通入已电离的速度为v的气流,两板间存在一磁感应强度大小为B的磁场,磁场方向与两板平行,并与气流垂直,如图所示。把两板与外电阻R连接起来,在磁场力作用下,气流中的正、负离子分别向两板移动形成电流。设该气流的导电率(电阻率的倒数)为σ,则( )
A.该磁流体发电机模型的内阻为r=
B.产生的感应电动势为E=Bav
C.流过外电阻R的电流强度I=
D.该磁流体发电机模型的路端电压为

【答案】AC
【解析】
试题根据左手定则知正电荷向上偏,负电荷向下偏,上极板带正电,下极板带负电,最终电荷处于平衡有:,解得电动势为:E=BLv.内电阻为:,根据闭合电路欧姆定律有:,那么路端电压为:,综上所述,故AC正确,BD错误.故选AC。

如图,L1和L2为两平行的虚线,L1上方和L2下方都是垂直纸面向里的磁感强度相同的匀强磁场,A、B两点都在L2上.带电粒子从A点以初速v与L2成α角斜向上射出,经过偏转后正好过B点,经过B点时速度方向也斜向上.不计重力,下列说法中正确的是(  )

A.此粒子一定带正电荷
B.带电粒子经过B点时速度一定跟在A点时速度相同
C.若角时,带电粒子经过偏转后正好过B点,则角时,带电粒子经过偏转后也一定经过同一个B点
D.若角时,带电粒子经过偏转后正好过B点,则角时,带电粒子经过偏转后也一定经过同一个B点

【答案】BD
【解析】
画出带电粒子运动的可能轨迹,B点的位置可能有下图。如图所示。

A.如图,分别是正负电荷的轨迹,正负电荷都可能。故A错误。
B.因为洛仑兹力与速度方向时刻垂直,所以洛仑兹力对电荷不做功,电荷动能不变,速度大小不变,如图,粒子B的位置在B2、B3,速度方向斜向上,跟在A点时的速度大小相等,方向相同,速度相同。故B正确。
C.如图,设L1与L2之间的距离为d,则A到B2的距离为:

当夹角是30°时

若将带电粒子在A点时初速度方向改为与L2成45°角斜向上,则

则不会经过B点,故C错误。
D. 如图,设L1与L2之间的距离为d,则A到B2的距离为:

当夹角是30°时

若将带电粒子在A点时初速度方向改为与L2成60°角斜向上,则

则经过三个周期后粒子也可以经过B点。故D正确。

现有一个阻值大约为20Ω 的电阻,为了更精确地测量其电阻,实验室给出了以下器材:
①电流表G1(0~50mA,内阻r1=3Ω)
②电流表G2(0~100mA,内阻r2=1Ω)
③定值电阻R1(R1=150Ω)
④定值电阻R2(R2=15Ω)
⑤滑动变阻器R(0~5Ω)
⑥干电池(1.5V,内阻不计)
⑦开关S及导线若干

(1)某同学设计了如图甲所示的电路图,其中A、B一个为被测电阻、一个为定值电阻,请问图中电阻_______为被测电阻(填“A”或“B”),定值电阻应选________(填“R1”或“R2”)
(2)若某次测得电流表G1、G2的示数分别为I1、I2.则被测电阻的大小为___________(用已知和测量物理量的符号表示).
(3)若通过调节滑动变阻器,该同学测得多组I1、I2的实验数据,根据实验数据做出I1、I2的图象如图乙所示,并求得图象的斜率k =1.85,则被测电阻的大小为________Ω(保留三位有效数字).

【答案】B R2 21.2
【解析】
(1)[1][2] 电流表G1的量程是电流表G2的一半,但电阻值约为待测电阻的,所以需要给电流表G1串联一个定值电阻,将待测电阻与电流表G1并联即可,所以B为待测电阻。电流表G1的量程是电流表G2的一半,电流表G1的内电阻与R2的和与待测电阻接近,所以定值电阻应选择R2。
(2)[3] 根据实验原理图可知,并联部分两侧的电压是相等的,即:
(I2-I1)Rx=I1(r1+R2)
所以:

(3)[4] 将上式变形:

代入数据可得:
Rx=21.2Ω

如图所示,水平导轨间距为L=0.5m,导轨电阻忽略不计;导体棒ab的质量m=1kg,电阻R0=0.9Ω,与导轨接触良好;电源电动势E=10V,内阻r=0.1Ω,电阻R=4Ω;外加匀强磁场的磁感应强度B=5T,方向垂直于ab,与导轨平面成角;ab与导轨间动摩擦因数为μ=0.5(设最大静摩擦力等于滑动摩擦力),定滑轮摩擦不计,线对ab的拉力为水平方向,重力加速度g=10m/s2,ab处于静止状态已知=0.8,=0.6求:
(1)通过ab的电流大小和方向.
(2)ab受到的安培力大小和方向.
(3)重物重力G的取值范围.

【答案】(1)通过ab的电流大小为2A,方向由a向b(2)ab受到的安培力大小为5N,方向垂直B斜向左上方(3)重物重力G的取值范围为0.5N≤G≤7.5N
【解析】
(1)由闭合电路的欧姆定律可得,通过ab的电流

方向:由a到b;
(2) ab受到的安培力

安培力方向如图所示
(3)ab受力如图所示,最大静摩擦力:

由平衡条件得:当最大静摩擦力方向向右时:

当最大静摩擦力方向向左时:

由于重物平衡,故:
T=G
则重物重力的取值范围为

如图所示,一半径为R的圆形磁场区域内有垂直于平面向里的磁感应强度为B的匀强磁场,P、Q是磁场边界上的两个点,P、Q两点与圆心O的连线夹角为120°,在圆形区域的最低点P处有一个离子源,该离子源能够在圆形区域平面内向各个方向发射大量的质量为m、带电量为-q的带电粒子,这些带电粒子的速度大小都相同,忽略带电粒子在运动中相互作用的影响,不计重力,则:
(1)若沿PO方向射入磁场的带电粒子恰好从磁场边界上的Q点射出磁场,带电粒子的速度大小应该是多少?
(2)若只有磁场边界上的P、Q两点之间的区域有带电粒子射出,这些带电粒子速度大小又是多少?

【答案】(1) (2)
【解析】
(1)从Q点射出,沿PO方向射入,与PO方向垂直为半径方向, PQ连线的中垂线也是半径方向,交点即为圆心,因为P、Q两点与圆心O的连线夹角为120°,根据几何关系可求出,圆周运动半径

根据牛顿第二定律

解得,带电粒子的速度大小

(2) 从P点射入的粒子与磁场边界的最远交点为Q,最远的点是轨迹上直径与磁场边界圆的交点,圆弧PQ的弧长是圆周长的 ,所以粒子做圆周运动的半径 为:

根据牛顿第二定律

所以带电粒子速度大小

如图所示,在xoy坐标平面的第一象限内有一沿y轴负方向的匀强电场,在第四象限内有一垂直于平面向外的匀强磁场,一质量为m,带电量为+q的粒子(重力不计)经过电场中坐标为(3L,L)的P点时的速度大小为V0.方向沿x轴负方向,然后以与x轴负方向成45°角进入磁场,最后从坐标原点O射出磁场求:

(1)匀强电场的场强E的大小;
(2)匀强磁场的磁感应强度B的大小;
(3)粒子从P点运动到原点O所用的时间.

【答案】(1) (2) (3)
【解析】试题分析:(1)当粒子从P点垂直进入电场后,做类平抛运动,再以与x轴成45°垂直进入匀强磁场后,在洛伦兹力作用下做匀速圆周运动,接着从原点射出.由粒子在电场P点的速度可求出刚进入磁场的速度,再由动能定理可得电场强度.(2)从而由类平抛运动与圆周运动结合几何关系可求出圆弧对应的半径,因此可算出磁感应强度.(3)同时由周期公式及运动学公式可求出粒子从P点到O点的时间.
粒子在电场中经过点P后,做类平抛运动,进入磁场中做匀速圆周运动,从O点射出,则其运动轨迹如图所示.
(1)设粒子在O点时的速度大小为v,OQ段为圆周,PQ段为抛物线.根据对称性可知,粒子在Q点时的速度大小也为v,方向与x轴正方向成45°角,可得
解得

在粒子从P运动到Q的过程中,由动能定理得,解得
在匀强电场由P到Q的过程中,水平方向的位移为
竖直方向的位移为
可得
故粒子在QO段圆周运动的半径
(3)在Q点时,
设粒子从P到Q所用时间为,在竖直方向上有:
粒子从Q点运动到O所用的时间为
则粒子从O点运动到P点所用的时间为:

©2021-2022咋考网版权所有,考题永久免费